Fractal: A mobile code-based framework for dynamic application protocol adaptation
نویسندگان
چکیده
The rapid growth of heterogeneous devices and diverse networks in our daily life, makes it is very difficult, if not impossible, to build a one-size-fits-all application or protocol, which can run well in such a dynamic environment. Adaptation has been considered as a general approach to address the mismatch problem between clients and servers; however, we envision that the missing part, which is also a big challenge, is how to inject and deploy adaptation functionality into the environment. In this paper we propose a novel application level protocol adaptation framework, Fractal, which uses the mobile code technology for protocol adaptation and leverages existing content distribution networks (CDN) for protocol adaptors (mobile codes) deployment. To the best of our knowledge, Fractal is the first application level protocol adaptation framework that considers the real deployment problem using mobile code and CDN. To evaluate the proposed framework, we have implemented two case studies: an adaptive message encryption protocol and an adaptive communication optimization protocol. In the adaptive message encryption protocol, Fractal always chooses a proper encryption algorithm according to different application requirements and device characteristics. And the adaptive communication optimization protocol is capable of dynamically selecting the best one from four communication protocols, including Direct sending, Gzip, Bitmap, and Vary-sized blocking, for different hardware and network configurations. In comparison with other adaptation approaches, evaluation results show the proposed adaptive approach performs very well on both the client side and server side. For some clients, the total communication overhead reduces 41% compared with no protocol adaptation mechanism, and 14% compared with the static protocol adaptation approach. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
An Adaptive Encryption Protocol in Mobile Computing
Using encryption for secure communication plays an important role in building applications in mobile computing environments. With the emergence of more and more heterogeneous devices and diverse networks, it is difficult, if not impossible, to use a one-size-fits-all encryption algorithm that always has the best performance in such a dynamic environment. We envision that the only way to acceler...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملDesign and Evaluation of a Method for Partitioning and Offloading Web-based Applications in Mobile Systems with Bandwidth Constraints
Computation offloading is known to be among the effective solutions of running heavy applications on smart mobile devices. However, irregular changes of a mobile data rate have direct impacts on code partitioning when offloading is in progress. It is believed that once a rate-adaptive partitioning performed, the replication of such substantial processes due to bandwidth fluctuation can be avoid...
متن کاملChisel: A Policy-Driven, Context-Aware, Dynamic Adaptation Framework
We argue that the software user, the developer, the designer and indeed the application logic itself all possess invaluable intelligence to gear how software should adapt itself to changing requirements and changing context. We present Chisel, an open framework for dynamic adaptation of services using reflection in a policy-driven, context-aware manner. The system is based on decomposing the pa...
متن کاملA New Framework for Secure Routing in VANET
Vehicular Ad-Hoc Networks can enhance road safety and enable drivers to avoid different threats. Safety applications, mobile commerce, and other information services are among different available services that are affected by dynamic topology, vehicle’s speed and node misbehaving. Dynamic topology makes the route unstable and unreliable. So, improving the throughput and performance of VANET thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Parallel Distrib. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 2006